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The purpose of the paper is to  consider in general terms the properties of the 
bulk stress in a suspension of non-spherical particles, on which a couple (but 
no force) may be imposed by external means, immersed in a Newtonian fluid. 
The stress is sought in terms of the instantaneous particle orientations, and the 
problem of determining these orientations from the history of the motion is not 
considered. The bulk stress and bulk velocity gradient in the suspension are 
defined as averages over an ensemble of realizations, these averages being equal 
t o  integrals over a suitably chosen volume of ambient fluid and particles together 
when the suspension is statistically homogeneous. Without restriction on the 
type of particle or the concentration or the Reynolds number of the motion, 
the contribution to the bulk stress due to  the presence of the particles is expressed 
in terms of integrals involving the stress and velocity over the surfaces of particles 
together with volume integrals not involving the stress. The antisymmetric 
part of this bulk stress is equal t o  half the total couple imposed on the particles 
per unit volume of the suspension. When the Reynolds number of the relative 
motion near one particle is small, a suspension of couple-free particles of constant 
shape is quasi-Newtonian; i.e. the dependence of the bulk stress on bulk velocity 
gradient is linear. Two significant features of a suspension of non-spherical par- 
ticles are (1) that this linear relation is not of the Newtonian form and (2)  that  
the effect of exerting a couple on the particles is not confined to  the generation 
of an antisymmetrical part of the bulk stress tensor. The role of surface tension 
at the particle boundaries is described. 

I n  the case of a dilute suspension the contributions to the bulk stress from the 
various particles are independent, and the contributions arising from the bulk 
rate of strain and from the imposed couple are independent for each particle. 
Each particle acts effectively as a force doublet (i.e. equal and opposite adjoining 
' Stokeslets') whose tensor strength determines the disturbance flow far from 
the particle and whose symmetrical and antisymmetrical parts are designated 
as a stresslet and a couplet. The couplet strength is determined wholly by the 
externally imposed couple on the particle; but the stresslet strength depends both 
on the bulk rate of strain and, for a non-spherical particle, on the rate of rotation 
of the particle relative to the fluid resulting from the imposed couple. The general 
properties of the stress system in a dilute suspension are illustrated by the specific 
and complete results which may be obtained for rigid ellipsoidal particles by 
use of the work by Jeffery (1922). 
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1. Introduction 
Suspensions of small particles in fluid are common in nature and in several 

engineering fields, and it is desirable to  know how they respond to imposed 
forces or motions at their boundaries. Provided the length scale of the motion 
imposed on the suspension is large compared with the average spacing between 
the particles, the suspension may evidently be regarded for some purposes as 
a homogeneous fluid. The problem is to determine the rheological properties 
of this equivalent homogeneous fluid from a knowledge of the properties of the 
particles and the ambient fluid in which they are suspended; in other words, to 
determine the relation between the macroscopic or bulk properties of the sus- 
pension and its microscopic structure on the particle scale. 

The most important rheological property is usually the stress corresponding 
to a given bulk motion, and this alone will be investigated here. 

The particles and the ambient fluid will be supposed to be incompressible, 
of uniform temperature, and permanent in constitution; no thermodynamical 
considerations will arise. It will also be assumed that the ambient fluid is 
Newtonian in its stress behaviour and that the particles are distributed with 
statistically uniform concentration throughout the fluid. 

When the particles are spherical, and no external force or couple acts on them, 
the suspension has a wholly isotropic structure, and so behaves as a Newtonian 
fluid for sufficiently small rates of strain. I n  these circumstances the effect of 
the presence of the particles is simply equivalent to  an increase in the shear 
viscosity of the suspension. The magnitude of this increase, expressed as a 
fraction of the viscosity p of the ambient fluid, is a linear function of the con- 
centration of the particles by volume (c ,  say) when c < 1, and the constant of 
proportionality depends on the constitution of the particles, being 2.5 for rigid 
spheres and (p + 2.5pr)/(p +p') for fluid spheres of viscosity pr. I n  recent years 
research on suspension rheology has been directed towards extensions of these 
well-known results, in particular for the cases of (a )  more concentrated suspensions 
of spherical particles, (b )  deformable particles with both viscous and elastic 
properties, and ( c )  non-spherical rigid particles. None of these extensions is yet 
complete, and there are also other problems which have not yet been given much 
consideration, such as the effect of inertia forces in the relative motion near a 
particle, and the effect of an externally imposed couple on the particles. Theoretical 
analysis of the stress properties of a suspension of particles is still in its early 
stages. 

Much of this paper is concerned with the formulation of the problem of de- 
termining the stress in a suspension of particles, in a way which provides a 
framework for known results and for further developments. This is not as 
straightforward as might be supposed, partly because the meaning of bulk stress 
in a suspension is not obvious; the view taken here is that it should be defined 
as a probability ensemble average. I n  view of the notorious difficulty in recon- 
ciling contributions to suspension mechanics written from different points of 
view, I have thought i t  worth while to set out the argument in fairly complete 
and general form. It is assumed that the body force per unit volume exerted 
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by external means is uniform over the ambient fluid and particles alike, with 
the implication that there is no systematic translational motion of a particle 
through the ambient fluid. However, allowance will be made for the existence 
of a relative rotational motion of a particle and the ambient fluid due to the 
action of an externally imposed couple on the particle (as might be caused by 
an external magnetic or electric field for particles of suitable material-a situa- 
tion with interesting possibilities for control of the mechanical properties of a 
suspension). The properties of the stress tensor will be considered for particles 
of general shape and constitution, and in the last section these properties are 
illustrated and interpreted with the aid of specific formulae for the case of 
rigid particles of ellipsoidal shape in a dilute suspension. In subsequent related 
papers, results which have been obtained by the author and colleagues a t  
Cambridge for various particular suspensions will be described. 

Aside from the obvious direct purpose of this paper and those to follow, namely, 
to derive results concerning the stress which are applicable, at  least approxi- 
mately, to certain naturally occurring suspensions, there is an underlying in- 
direct objective. A major difficulty in the study of rheology is that one’s intui- 
tion about the form of the constitutive stress relation appropriate to given 
circumstances is so poorly developed. It is often hard to know even in broad 
terms how a given material will behave, chiefly because we have a t  our disposal 
so few definite and well-understood constitutive relations for non-Newtonian 
fluids to provide guidance. This difficulty affects mathematical theory as well 
as the interpretation of observation, since, for lack of concrete results which 
can be used as a testing ground, the hypotheses on which analysis must perforce 
be based tend to be artificial and unmotivated. Now the microscopic structure 
of a suspension can be precisely specified, and it may be possible-and not only 
in principle-to deduce some of the macroscopic properties of the suspension 
and to see in explicit terms their relation to the microstructure. This seems to 
me to give the mechanics of suspensions an especially important place in current 
studies of rheology, in that we have the unusual opportunity of obtaining 
definite and explicable constitutive relations which are known to apply to 
specifiable materials and which may be used as a reliable guide for intuition. 
The development of understanding made possible by these concrete constitutive 
relations is the indirect objective referred to above. 

It is useful to notice at  the outset that two different and logically separate 
mechanical effects occur in a moving suspension of particles. In  a material 
element of‘the suspension large enough to contain many particles, there will be 
at, any instant a certain statistical distribution of particles with respect to 
shape, orientation, size and relative position, and this information we can regard 
as included in a specification of the instantaneous ‘state’ of that element of the 
suspension. The bulk stress in the element corresponding to a given local bulk 
motion and a given externally imposed couple on each particle depends only 
on this instantaneous state, in a way which will be examined and which involves 
a consideration of the motion of the ambient fluid near each particle. This 
dependence of the bulk stress on the instantaneous particle configuration is the 
first of the two effects referred to, and is one which poses mainly rheological 
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questions. The second effect is the rotation and relative displacement of the 
particles under the influence of the local motion of the ambient fluid. The con- 
figuration of the particles, and so also the state of an element of the suspension, 
is changing in a way which depends on the nature of the instantaneous motion 
of the element; and in general a calculation of the state of an element a t  an 
arbitrary time after some given initial instant requries a knowledge of the history 
of the motion of the element. This is essentially a problem of microscopic 
dynamics. 

Separate consideration of these two effects has some advantages. One is that 
the relation between the bulk stress and the bulk velocity gradient, for a given 
state of the suspension, is linear under certain conditions, whereas if the rate 
of change of the state of the suspension due to  particle rotation is considered 
simultaneously this fundamental linearity is concealed. It also happens that 
there are some circumstances in which the orientation of each particle is constant, 
in which case the derived relation between the bulk stress and the instantaneous 
distribution of particle orientations is of immediate value; examples are: (1)  
a steady pure straining motion of a suspension of non-spherical couple-free 
particles (such as an ellipsoid, which takes up an asymptotic orientation in which 
the longest diameter is parallel to  the greatest principal rate of strain and the 
shortest is parallel to  the least principal rate of strain-see (6.7), near the end 
of this paper); and (2) a suspension of ferromagnetic particles on which is ex- 
erted a couple, by means of an external magnetic field, of sufficiently large 
magnitude to  hold the particle orientation fixed despite the tendency for the 
particle to rotate with the surrounding fluid. 

Only the dependence of the bulk stress on the instantaneous configuration 
of the particles is considered in this paper; ‘history’ effects are set aside for 
subsequent investigation in the context of particular flow systems. 

2. The general form of the constitutive relation for a couple-free fluid 
of non-isotropic structure and small rates of strain 

As a preliminary, we recall here the general form of the relation between the 
stress tensor and the local properties of the motion for any fluid material which 
does not have isotropic structure and on which no external body couple is 
imposed. 

This general expression for the stress, for a given state of the fluid and for 
sufficiently small rates of strain, follows from the same phenomenological 
thermodynamic-type argument that is employed for an ordinary Newtonian 
viscous fluid. When the fluid as a whole is set into relative motion, an element of 
the fluid is disturbed from its state of mechanical equilibrium, and the nature 
and magnitude of the departure from equilibrium is measured by the local velocity 
gradient of the motion. Random exchanges of momentum between different 
parts of the element, acting on a molecular scale and perhaps also on a larger 
scale, inevitably tend to  restore the element to equilibrium. The deviatoric part 
of the stress generated by the motion is a measure of the tendency to  restoration 
of mechanical equilibrium, and, for sufficiently small magnitudes of the velocity 
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gradient, can be expected to be a linear function of that gradient. This is the 
familiar hypothesis about the restoring flux accompanying sma.11 deparhres 
from equilibrium which underlies all molecular transport theory. It is important 
to note that this hypothesis is no less applicable when particles of macro- 
molecular dimensions are suspended in the fluid, provided the scale on which the 
motion occurs is sufficiently large, although before using it in this context we 
shall need to say what is meant by ‘the stress ’ in a fluid which is inhomogeneous 
on a macro-molecular scale. 

Thus the contribution to  the stress tensor due to  the motion of the fluid is 
of the general form 

- 

Here P is the scalar parameter in the isotropic part of the stress tensor and is 
interpreted as the pressure, V,  denotes the (i-component of the) local velocity, 
and Aijkl is a tensor parameter determined by the local state of the fluid. By 
definition of the second term in (2.1) as the deviatoric part of the stress tensor, 

Also the usual consideration of the balance of angular momentum for an element 
of volume of the fluid shows that, when no body couple acts on the medium, 
the stress tensor, and so also the tensor Aijkl, must be symmetrioal in the indices i 
and j. 

The expression (2.1) for the stress tensor is expected to  apply only for ‘small ’ 
magnitudes of alJ/ax,. I n  the case of a suspension, departures from the linear 
relation will occur when the magnitude of the velocity gradient is so large that 
either the ambient fluid ceases to be Newtonian or the disturbance motion in 
the ambient fluid due to the presence of the particles ceases to  be dominated by 
viscous forces; the latter restriction will normally be the more important, and 
will be given in more precise form later. 

I n  the case of a fluid of isotropic structure, the expression (2.1) can be sim- 
plified considerably. The tensor parameter Aiikl is here of isotropic form, and 
so must be representable as the sum of three terms which are products of two 
delta tensors (Jefieys & Jeffreys 1966, ch. 3). Bearing (2.2) in mind, and also 
the need for symmetry of Ai,kz in i a n d j  for a couple-free medium, we then have 

A(jk l  = p( sik + &il6jk - g6ij &kl) 

where p is a scalar quantity determined by the local state of the fluid; and the 
expression for the stress due to the motion takes the usual Newtonian form 
(for an incompressible fluid) 

au, aq 
-P6,,+p (axi -+- ax,) . 

These latter simplifications are not applicable in the case of a fluid of non- 
isotropic structure. However, the essential linearity of the expression (2.1) for 
the stress tensor in the velocity gradient is applicable, and it seems appropriate 
to  label such a medium as quasi-Newtonian. 
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According to  the point of view adopted here, the expression (2.1) for the 
stress is concerned only with local instantaneous quantities, and the parameter 
AijkZ representing the state of the fluid is formally independent of the motion. 
However, in a consideration of the way in which the state of the material element 
of the fluid, and so the value of Aijkl, changes with time, the relation between the 
current value and a given initial value of Aiikl would be found in general to  
involve the local velocity and its spatial derivatives a t  different times. The point 
may be made clear by reference to the description of the stress in a Newtonian 
fluid of non-uniform temperature; so far as the instantaneous state of the fluid 
is concerned, the deviatoric stress is a linear function of the 1oca.l rate of strain, 
but the constant of proportionality-the shear viscosity-depends on the 
temperature of the material element concerned and this changes in a way which 
brings in a further dependence on the history of the motion of the element. I n  
the case of a suspension of non-spherical particles, the local state of the fluid 
changes mainly as a consequence of rotation of the particles. Only when the 
local and instantaneous state of a fluid is regarded as given is the constitutive 
relation linear in general. 

The expression (2.1) shows explicitly that the number of scalar parameters 
required in general to describe the frictional properties of a suspension, regarded 
as a fluid of non-isotropic structure, is equal to  the number of independent com- 
ponents of Aijkl, and this, in view of (2.2) and the symmetry in i and $, and if 
we anticipate symmetry in Ic and I ,  corresponding to  no effect of a bulk rigid 
rotation, is 30. Hand (1962) has investigated the frictional properties of a non- 
isotropic fluid on the assumption that the ‘substructure’ is determined by a 
symmetric second-order tensor; this we see is not sufficient in general, although 
it clearly is adequate in the particular case of a dilute suspension of similarly 
oriented and similarly shaped rigid ellipsoids, which was the only particular 
case considered by Hand. 

3. The averaging process for a suspension 
I n  crude terms, we wish to  know what stress is generated in the suspension 

when a prescribed bulk motion is imposed on it. However, the velocity, pressure 
and stress all vary with position in the suspension, depending on proximity to  
a particle, and the terms ‘bulk stress in the suspension’ and ‘bulk velocity 
gradient ’ have meaning only in some integral or average sense, and the method 
of averaging must now be specified. 

There appear to be advantages in the use of the terminology and concepts of 
statistical mechanics and random function theory, as in the analogous fields 
of turbulence and kinetic theory of gases. The parallel with kinetic theory is 
obviously close, the primary mechanical difference being that interactions be- 
tween the particles are a consequence of interparticle forces in one case and of 
continuum forces in the medium surrounding the particles in the case of a 
suspension. 

A suspension is a system which is determinate (so far as an observer is con- 
cerned) only in a statistical sense, inasmuch as the exact location of the particles 
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is different for different realizations of the suspension with the same macroscopic 
conditions (that is, with the same shape and motion of the bounda.ry of the 
suspension). A large number of such realizations with the same macroscopic 
boundary conditions make up an ensemble, and an average over the values of 
some quantity occurring in these realizations is an ensemble average (and will 
be denoted by an over-bar). Thus, if u is the actual vector velocity at position x 
in the suspension-perhaps in the ambient fluid, perhaps in a particle-for one 
realization, the ensemble average ii may be defined and observed in principle. 
We shall adopt this procedure of averaging over an ensemble as the basic 
definition of the averaging process which yields bulk quantities (as suggested 
by Hashin (1964)), although we shall see that other averaging procedures which 
give identical results under certain conditions may be more convenient for 
calculation. 

It is also possible to take an ensemble average of the values of the actual stress 
crii at a point x (which again may be located either in the ambient fluid or inside 
a particle). However, here it must be remembered that the stress across a surface 
element is a resultant of the forces exerted across the element and the momentum 
flux across the element, and that when velocity fluctuations are concealed by 
an averaging process the momentum flux due to these fluctuations must be 
included in the definition of the bulk or macroscopic stress (in ways already 
familiar in kinetic theory and turbulence). Thus the ‘bulk stress in the supension’ 

where mii is the momentum flux tensor. In the absence of any average relative 
motion of the two constituents of the suspension, mi$ has the familiar form puiui, 
where u’ = u-6  and p is the common density of the ambient fluid and the 
particles. 

Ensemble averages can neither be calculated directly nor observed con- 
veniently, and it is necessary to consider the relation between ensemble averages 
and both calculable averages and those bulk quantities that are observed in a t  
least the most common type of experiment. To establish this relation we shall 
take for granted the usual ergodicity property of equality of the ensemble 
average of some quantity and an integral average of the same quantity over 
any position co-ordinate with respect to which the quantity is statistically 
stationary. It will also be necessary to assume that the suspension under dis- 
cussion is locally statistically homogeneous, in the sense that it is possible to find 
a length L which is large compared with the average particle spacing and over 
which the statistical properties of the suspension-defined as ensemble averages 
-do not vary appreciably. One of these statistical properties is the bulk deviatoric 
stress, which depends on the average velocity gradient, so that the velocity 
gradient should be included among the quantities whose average value must 
be slowly varying. In these circumstances a number of point functions such as u;, 
au,/axj, and crii are approximately stationary random functions of the position 

t It is pnident to add the qualification that this definition of bulk stress is adopted with 
a view to use in the bulk momentum equation for the suspension. Whether the same 
definition is sensible and useful for all other purposes is, I think, still an open question. 
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vector x over distances of order L. An integral average of one of these quantities 
with respect to  one or more components of x over a range of order L is then equal 
to the ensemble average of that quantity. 

This leads us to  equality of an ensemble average and a volume average, which 
is probably the most convenient kind of average for analytical purposes. The 
restrictions on the volume V over which the average is taken are that V should 
contain many particles and that the variation of the local statistical properties 
of the suspension over V should be negligible. Likewise there is equality of the 
ensemble average of some quantity and an average over a surface which makes 
an unbiased sample of the suspension and whose linear dimensions are large 
compared with the average particle spacing. I n  the particular case of the stress 
gtj, an average over a plane surface (which cuts through both ambient fluid 
and particles) normal to the direction represented by the suffix j has obvious 
appeal as a way of defining average stress, since it corresponds, although not to  
the point of realism, to  the method of measuring stress in a homogeneous fluid. 

It has become common practice in the literature to  define macroscopic or 
bulk quantities as volume averages over the whole or part of the volume occupied 
by the suspension; this procedure has been adopted for instance by Landau & 
Lifschitz (1959, $22) ,  Giesekus (1962), Peterson & Fixman (1963), Goddard & 
Miller (1967) and Roscoe (1967) among writers on suspension rheology, and by 
Hill (1963) writing on the elastic properties of dispersions of one solid material 
in another. The alternative starting-point adopted here-the ensemble average- 
gives identical results in circumstances in which a volume average can usefully be 
taken (namely, when a volume V satisfying the above restrictions can be found), 
and has the slight logical advantage, which will not be exploited here, that it 
is applicable also in circumstances in which the distance between the particles 
is too large, in relation to the distance over which the suspension properties 
vary, for a volume average to have significance (just as it is applicable in the 
comparable kinetic-theory context when the mean free path is not small com- 
pared with the boundary dimensions). 

Turning now to the relation between ensemble averages and measured quan- 
tities, we must recognize that a relation which will apply to all kinds of experiment 
cannot be given. MJe shall consider here only the important and representative 
case in which the suspension is confined between two parallel rigid planes in 
steady relative shearing motion, with the stress being observed as the force per 
unit area on a section of one boundary with linear dimensions large compared with 
particle spacing. Near each of the rigid boundaries there is a layer, presumably 
with thickness comparable to  a particle diameter, in which the st,atistical 
properties of the suspension (particle number density in particular) are affected 
by the presence of the boundary simply because the rigid boundary cannot 
intersect a particle. However, outside these two layers the suspension may be 
supposed to  be statistically homogeneous, and so in this interior region any 
space average over a suitably extensive range is equal to the local ensemble 
average. Moreover, in view of the mechanical equilibrium (on average), the force- 
plus-momentum-flux per unit area across any large plane surface pamllel to 
the boundaries (and which may cut through particles) is independent of position 
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of the plane surface and in particular is equal to  the force per unit area on one 
of the rigid plane boundaries; somewhat surprisingly, it is an exact inference 
from equilibrium that the average stress over a plane boundary which does not 
cut any particle is equal to the average stress-plus-momentum-flux over a parallel 
plane surface which does. Hence the observed average stress over a suitably 
extensive area of one of the rigid boundaries is equal to the volume-averaged 
stress-plus-momentum-flux in the interior homogeneous region and to  the 
ensemble-averaged stress-plus-momentum-flux in that region. 

It is also necessary to establish the relation between the theoretical average 
velocity gradient in the suspension and observable velocities. This can usually 
be done with the aid of the identity 

In the above case of flow between two rigid parallel planes in steady relative 
shearing motion, we may choose the volume V to be the intercepted portion of 
a cylinder with generators in the y-direction normal to the two rigid planes, 
whence 

I g d V  = J-A*ud.4-J-A,udA, 

where u is the velocity component in the direction of relative motion of the rigid 
planes and A ,  and A ,  are the intercepts of the cylinder with the two rigid planes. 
On A, and A ,  we have u = ay say, giving the exact relation 

The volume over which this integral is taken includes the layers adjoining the 
two rigid boundaries in which conditions are untypical and which must be 
excluded from the range of integration in any space average if it is to  be equal 
to the ensemble average. However, the two layers are thin, and, provided the 
distance between the rigid planes is large compared with the particle dimensions, 
they make a negligible contribution to the integral in (3.3). Thus the velocity 
gradient averaged over a volume confined t o  the homogeneous interior region 
is equal to  a, that is, to the value which would be inferred from the relative 
velocity of the boundaries with the assumption of uniform bulk velocity gradient 
throughout the suspension. 

4. The relation between the bulk stress and the detailed motion in the 
suspension 

We now use the expression for the bulk st.ress in the suspension as a volume 
integral in order to  establish its relation to the distributions of velocity and 
stress in the fluid near individual particles. The averaging volume V contains 
many particles, and the statistical properties of the suspension are stationary 
over V (implying that, in the case of a suspension which is inhomogeneous in 
the large, V must be suitably restricted in magnitude). The volume and surface 
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of a typical particle in V will be denoted by V, and A,. Then the bulk stress in 
the suspension is 

2.. = - (CTij-pu;u;)dV, 
a' v ' S  

and, since the ambient fluid is Newtonian, with viscosity ,u, we have 

where the summation is over all the particles in V .  

the analysis and will be denoted by aU,/ax, henceforth instead of aE,/ax,, is 
The volume-averaged velocity gradient, which plays an important part in 

where ni is an outward unit normal to A,. 
Also, we may write 

(4.3) 

It may happen that the interface of the ambient fluid and the particle is such 
that a surface tension must be supposed to act there. In such a case it is necessary 
to know whether the surface A,, over which the integral in (4.3) is taken lies on 
the outside or the inside of the interfacial layer. Since we have already assumed 
that the volume V - CV, is wholly occupied by ambient fluid in which the stress 
has the Newtonian form, the volume V, must be regarded as including the inter- 
facial layer. Thus the surface A, lies on the outside of the interfacial layer, and 
the stress in the surface integral in (4.3) is the boundary value of the Newtonian 
stress in the ambient fluid. It follows also that the range of integration for the 
volume integral on the right-hand side of (4.3) includes the interfacial layer 
within which some components of the stress tensor have very large values, but 
the stress divergence is non-singular everywhere and the interfacial layer makes 
no contribution to this volume integral.? 

As already stated, we are assuming that the external body force per unit 
volume is uniform throughout the suspension. A uniform body force per unit 
volume can of course be equilibrated by a linearly varying isotropic stress which 
may be ignored. Hence, with allowance for inertia forces, we may put 

a ~ ~ i / a x j  = pj; (4.4) 

at each point of the suspension, where f is the local acceleration relative to the 
average value of the acceleration in V and the density p is assumed to be uniform 
throughout the suspension. 

7 Further explanation of the role of surface tension is given in the appendix. 



Stress system in a suspension of force-free particles 555 

With the aid of (4.2), (4.3) and (4.4), we may write the expression (4.1) for 
the bulk stress as 

where 

(4.5) 
The first term in this expression for Zij is a purely isotropic contribution of no 
particular interest; the second term is the deviatoric stress that would exist in 
the absence of the particles and with the same average velocity gradient; and 
the third represents the contribution to the bulk stress due to the presence of 
the particles. We shall call Ejp) the ‘particle stress’. Only the deviatoric part 
of the particle stress is significant. 

It may now be seen that the exertion of a couple on the particles by external 
means generates an antisymmetrical contribution to the bulk stress. The angular 
momentum equation for one particle gives 

Li = eiik IAo c ~ , ~ x ~ n ~ d A - e ~ ~ ,  pj;xkdV= E ~ , ~  / o;,dV, (4.6) vo 

where Li is the pure couple exerted on the particle by external means, and it 
follows from (4.5) that 

1 
v E;,, Zjk = ei,k zip = - c L. 

The pure couple exerted on the particles thus accounts for the whole of the 
antisymmetrical part of the bulk stress. It would be tempting to suppose that 
the symmetrical part of the bulk stress is unaffected by the couple, but we see 
explicitly later that this is not so in general. We note also for later use that a 
relation like (4.6) holds for any small element of material, within which the 
stress tensor is approximately uniform, whence 

% k f l j k  = =% 
where gi is the externally imposed couple per unit volume of material. This is 
a local relation, valid at each point of the suspension; at points in the ambient 
fluid gi = 0, whereas for the points within one particle we have 

n 

An alternative form of (4.5) which shows the symmetrical and antisymmetrical 
parts of the bulk stress tensor separately is thus 

1 1 zip) = z {i(cTikxi + cT,,xi) nk -p(uinj  + u,n,)> d~ + - 2 eijk L, 2 v  
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Also of interest is the rate of dissipation of energy in the suspension. Dissipa- 
tion occurs only through the action of internal friction a t  a rate iaui/axj( gij + gji) 
per unit volume at each point,t and the average rate over the volume V of the 
suspension is 

CD = - - - (CTij+rTji)dV v s 2 aui ax, 

where w = V x u is the local vorticity and w' is its fluctuating part. The second 
term on the right-hand side of (4.8) is non-zero only when the suspension is 
statistically non-uniform. Since the orders of magnitude of u; and of the variable 
part of aij are ed and pe in the neighbourhood of a particle of dimension d and 
smaller elsewhere, where e is a representative magnitude of the bulk rat.e of strain, 
the ratio of the second term to pe2 is never larger than the ratio of d to the distance 
over which the state of the suspension changes appreciably; thus the second term 
is negligibly small under the assumed conditions. (Use of the divergence theorem 
shows that this second term is zero if the velocity a t  the boundary of the volume V 
is exactly a linear function of position so that u' = 0 there, and this condition 
has been adopted by most authors. Such a restriction seems artificial-although 
of course it fits the circumstances of some experiments-and the above argu- 
ment shows that it is unnecessary.) I n  the third term on the right-hand side 
of (4.8) we use the fact that fi is the local fluctuation in acceleration to  make the 
substitution 

au; au. au: a ~ f! = -+u! 2 + u .  2+- (u!u'.-ufu'). 
a at ax, 3 axj ax, a 3 j 

Then, with neglect of another spatial derivative of an averaged quantity with 
similar justification, (4.8) becomes 

The interpretation of this relation when the imposed couple is zero is that the 
apparent rate of dissipation per unit volume, as estimated from the bulk quan- 
tities aUJax, and i(Zij + Z;.;), gives the sum of the true dissipation of mechanical 
energy into heat and the rate of increase of 'microscopic' kinetic energy per 
unit volume of a material element moving with the mean flow; this sum is the 
rate a t  which bulk mechanical energy is being lost, and so is an effective rate 
of dissipation. However, when a couple is imposed, this apparent rate of dissipa- 
tion as estimated from the bulk quantities must be supplemented by the second 
term on the right-hand side of (4.9) (which becomes C$w; Li/V when the particles 
are rigid) representing the rate of working by the externally imposed couple 

t When surface tension acts a t  the particle boundaries, points on these interfaces 
require separate consideration. The consequent modifications to (4.5) and (4.9) are 
described in the appendix. 
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associated with the fluctuation in angular velocity. Thus here the rate of dissipa- 
tion cannot in general be determined from the bulk stress and velocity gradient 
alone. 

The expression (4.5), and the alternative form (4.7), hold for any shape of 
size or type of force-free particles, for any concentration of the particles, and 
for any magnitude of the average velocity gradient (provided only that the 
stress in the ambient fluid is Newtonian). These expressions contain allowance 
for two effects not normally included in investigations of the average stress in 
a suspension. One is the effect of rotational motion of the particles relative to 
the ambient fluid under the action of a couple imposed by external means, 
although the form of (4.5) is not affected explicitly by this effect. The other is 
the effect of inertia forces associated with the fluctuations about the average 
motion inside and outside the particles, which gives rise to the last two terms 
in (4.5) or (4.7). Both effects influence the values of vij and ui on the surface A,. 
The form taken by (4.5) in the absence of these two effects appears to have been 
given first by Landau & Lifschitz (1959, fj 22). 

The non-linear inertial effects associated with the fluctuations about the 
average motion are likely to be diffioult to calculate in a specific case, and it is 
therefore important to know when they may be neglected. Completely general 
Conditions are complicated, but we get some insight from a consideration of the 
Reynolds number of the disturbance or fluctuating motion arising from dif- 
ferent causes separately. For simplicity suppose that a particle has the same 
representative linear dimension d in all directions. The velocity fluctuation 
caused by the presence of the particle in the imposed bulk straining motion 
(with e as a representative magnitude of the average rate of strain) is of order ed, 
and the corresponding Reynolds number for the disturbance motion in the 
ambient fluid is ed2p/,u. Another source of disturbance motion is the couple 
imposed by external means on the particle, which causes it to rotate with 
angular speed s1 relative to the ambient fluid and so produces a fluid motion 
whose Reynolds number is Qd2p/,u. Thus for these disturbance motions in the 
fluid to be free from the effect of inertia forces we require 

(4.10) 

These conditions will frequently be satisfied in practice. (For a low-viscosity 
fluid like water, the condition that the Reynolds number of the translational 
motion of a particle due to gravity should be small will often be a more severe 
restriction on particle size.) 

In  the remainder of this paper we shall suppose that the effect of inertia 
forces associated with the fluctuations about the average motion is negligible. 
In  these circumstances the last two terms in (4.5) and (4.7) may be ignored and 
we have for the contribution to the bulk stress due to the presence of the particles 

(4.11 a) { Crik zj n, - /!L(Ui nj + uj mi)} dA 
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It will be noticed that, since no excess body force acts on a particle and momentum 
changes are being neglected, the point about which the first moment of the stress 
at the particle surface is calculated is arbitrary; i t  is thus permissible to choose 
with convenience a different origin for each particle. 

The determination of gij and ui at the surface of each particle has now been 
reduced to a linear slow-viscous-motion problem. It is evident that the fluctua- 
tions in both rii and ui will be linear functions of the average velocity gradient' 
in V ,  for either a dilute or concentrated suspension of particles of permanent 
form, and that they will vanish with this gradient, when the pa,rticles have 
neither translational nor rotational motion due to external influences. Thus in 
these latter circumstances the average deviatoric stress due to the particles is 
proportional to  aq.axi and the suspension is quasi-Newtonian, as expected from 
the general arguments in § 2. 

Finally we notice alternative forms for the deviatorjc part of (4.11) which will 
be needed later. At the boundary of a rigid particle, the no-slip condition gives u 
in terms of the particle velocity, and the integral of uini + ujni over the surface 
A ,  is zero for eit,her translational or rotational motion (or a combination 
thereof) of a rigid particle. Nevertheless, we leave uini + ujni in the integrands 
in (4.11) not only to allow the possibility of application of (4.11) to non-rigid 
particles, but also because in the above form the integrals may be taken (when 
inertia forces are negligible) over any closed surface A lying entirely in the 
ambient fluid and enclosing the particle A ,  but no other particle. Also, if we 
define the stress fluctuation uij by 

(4.12) 

where p ,  is constant in V ,  and u = U + U' as before, it may be seen that gii and 
ui in (4.11) may be replaced by crli and u;. And the replacement of the surface 
A ,  by A is still possible when this change has been made. 

It is difficult to go beyond this point in the investigation of the stress in a 
concentrated suspension and very few definite results have been obtained. In  
particular, we do not yet know which statistical parameters of the state of the 
suspension determine the bulk stress. However, progress can be made in the 
case of a dilute suspension. 

5. The particle stress in a dilute suspension 
As the average distance between the particles in a suspension increases, the 

distributions of velocity and stress at the surface of one particle are less affected 
by the presence of all the others. And, in the limit c -+ 0 (where G is the concentra- 
tion of particles by volume), the flow near each particle is that which would be 
set up if it alone were immersed in an infinite body of ambient fluid with a uniform 
velocity gradient a t  large distances from the particle. Furthermore, the limiting 
value of this velocity gradient, as c --f 0,  must be the average gradient aL$/axj. 
The manner in which these limits are approached is not obvious (and needs to  
be considered in an investigation of the next approximation to the particle stress), 
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but there can be no doubt about the limits themselves. The relation (4.11) shows 
that under these conditions the different particles in the volume V of the sus- 
pension make linearly additive contributions to the particle stress, and that the 
particle stress so obtained from (4.11) is correct to the order of the first power of 
the number density of the particles, that is, to  the order of c. This is the standard 
basis of dilute suspension theory. 

We now consider in general terms the flow near a single particle, on which an 
externally imposed couple (but no force) may act, with the assumption that the 
Reynolds number of the relative motion near the particle is sufficiently small 
for inertia forces to be negligible. Far from the particle the velocity gradient 
in the fluid is uniform and equal to the average velocity gradient in the whole 
suspension, which we shall write as 

that is, the flow far from the particle is represented as the superposition of a 
pure straining motion characterized by the rate-of-strain tensor eii and a rigid- 
body rotation with angular velocity Qi. The velocity, pressure and stress in the 
fluid will be written as 

cii = -pOaii + 2peii + gii, 
where po is a constant and u;, p' ,  are the disturbance quantities resulting 
from the presence of the particle. In  the present circumstances, u;, p' and uij 
are determinate, not random, quantities. The disturbance quantities satisfy the 
slow-viscous-motion equations 

J 

I Vp' = p v w  = - v x 0') 

V.U' = 0) 
(5-3) 

where w' is the disturbance vorticity V x u'. The outer boundary condition is 

where r = 1x1. 
The inner boundary conditions to be satisfied by u; and p' depend on the 

constitution of the particle. If the material in the particle is undergoing deforma- 
tion, the disturbance quantities inside the particle satisfy differential equations 
which may be different from (5.3), and the internal and external distributions 
of velocity and stress must satisfy the usual matching conditions at the particle 
surface; and the shape of the particle surface must itself be determined as a 
part of the matching problem. Investigation of the flow in and near a deformable 
particle presents a variety of special problems (contributions to which have been 
made by Taylor (1932, 1934)) Roscoe (1967)) Goddard & Miller (1967), and Cox 
(1969)), and inclusion of this case in the present general discussion would require 
rather complicated statements. I shall therefore consider here only the case of 
a rigid particle; this allows examination of the effects of particle shape and of 
an externally applied couple, and, if the more complete expression for particle 
stress given in $4 isretained, of inertia forces in the relative motion near a particle. 

ui-t 0, p'+O, as r+co, 
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Satisfaction of the no-slip condition a t  the surface A ,  of a rigid particle requires 

ui = z ) i  + Eijk( Q,j f rj) x k  (5.4) 

on A,, where v is the velocity of the material point of the particle coinciding 
instantaneously with the origin and I' is the angular velocity of the particle 
relative to that of the undisturbed ambient fluid. I n  this linear problem, the 
two causes of disturbance motion make independent contributions to v and I', 
for given instantaneous position and orientation of the particle, and i t  is con- 
venient to represent them separately. There are first the contributions dS), FS) 
due wholly to the straining motion in the undisturbed ambient fluid, which are 
determined by the two conditions that the fluid stress exerted at  the surface of 
the particle yields zero force and zero couple on the particle; v(") and Fs) depend 
only on the rate-of-strain tensor eij, aside from the shape and orientation of the 
particle, and are evidently linear functions of eii. Secondly, there will be con- 
tributions v(c), I'@) due to  the couple L imposed on the particle by external means 
and determined by the conditions that the fluid stress at the surface of the par- 
ticle, when it is moving in fluid a t  rest a t  infinity and instantaneously with the 
given position and orientation, yields zero force and a couple on the particle 
equal to - L; dC) and r(c) are linear functions of L. On adding these contributions 
we obtain the inner boundary condition on the disturbance velocity in the form 

u'. 1, = v!s)+vp)+s.. z v k  (rW+ 7 r!"))Xk-eijxj 7 (5 .5)  
on the surface A,. 

The conditions specified are now sufficient for the determination of the dis- 
turbance quantities ul, p',  c&, and the contribution to the particle stress in the 
suspension due to the presence of this particular particle may then be calculated 
in principle from (4.11). Detailed results are available for an ellipsoidal rigid 
particle, and will be referred to in the next section. I n  this section we show some 
general features of the problem which apply irrespective of the shape of the 
particle. 

These general features are associated with the asymptotic forms of the dis- 
turbance quantities far from the particle. Both the pressure and the vorticity in 
inertia-less flow of viscous fluid satisfy Laplace's equation, and can be written 
as series of spherical harmonics on and outside a sphere enclosing the body, the 
coefficients in these two series being related through (5.3). The forms of these 
series for a case in which, as here, p' and m i  both tend to zero a t  infinity are 

(5.7) 

where Di, Dik, . . . are coefficients which are determined by the inner boundary 
condition. (The spherical harmonic r-l does not appear because it is associated 
with a disturbance velocity which does not vanish as r --f CQ.) The first terms 
represent the type of singularity a t  the origin commonly called a Stokeslet, and 
i t  is known that the coefficient D is 1/4np times the resultant force exerted on the 
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fluid at the inner boundary; thus D = 0 here. The second terms in the series 
represent the effect of a force doublet at the origin, about which more will be 
said in a moment. 

The terms in the corresponding series for the disturbance velocity and stress 
are not spherical harmonics, but are simply related to them, and may be written 
down (Lamb 1932). Only the leading terms in the series will be needed for the 
present purposes, and these alone will be given explicitly. For the disturbance 

and the condition of zero volume flux across a surface enclosing the particle 
requires Dii = 0. 

The series expression for the disturbance stress follows as 

(5.9) 

(5.10) 

Now since the integral 

aikxjnk - $aij &xlnk -,u(u;ni + .ini)} dA (5.11) 

has the same value when taken over any closed surface surrounding the particle, 
we are free to choose a sphere centred at  the origin. It is evident that only 
the terms of even degree in r in the series for u;, and the corresponding terms of 
odd degree in the series for aij, make a non-zero contribution to the integral. 
Moreover, it follows from the general form of these terms and various integral 
theorems for spherical harmonics (Happel & Brenner 1965, $3.2) that only the 
first such term of even degree in the series (5.8) contributes; alternatively, we 
can evaluate the integral for the particular choice of a sphere of large radius. 
Either way, the integral (5.11) is found to be equal to 47rpDij. It follows then 
from the variant of (4.11a) with ui and aii replaced by u; and ali that the 
particle stress in the suspension is given by 

I{ 

(5.12) 

the summation being over all the particles in V as before. 

the second integral, 

that is &(Dij- Dji) = “ijkLk/4rP. (5.13) 

The alternative form of (5.12) which shows the symmetrical and antisymmetrical 
parts of ,Zj.tlp’ separately, as in (4.1 1 b) ,  i s  then 

We also see from (4.6) that, with neglect of the inertial effect represented by 

L,i = 42’IpE,ijkDjk, 

47rP 1 
= - V X &(Dij + Dii) + - 2 v  E eiikLk. (5.14) 

36 F L M  41 
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The singularity at  the origin that is associated with the asymptotic form of 
the disturbance motion due to a particle, and that represents the particle 
completely so far as its effect on the bulk stress in a dilute suspension is con- 
cerned, thus has two parts, one of which may be termed a couplet characterized 
by the axial vector Li and the other a stresslet characterized by the symmetrical 
tensor Sii = 47r,u*(Dii + Dii), in which the factor 41rp has been included in order 
to achieve a numerical correspondence between Sii and the effect of a force 
doublet at the origin. On rewriting the above relations in terms of the two 
quantities Li and Xi?, we have the properties shown in table 1. 

Disturbance pressure, p’ 

Stresslet Couplet 

0 

Disturbance velocity, u; - 

(%z + &ikZXj) 
3Lz Xk Disturbance stress, uij 2 (- r 877 lb 

Moment of disturbance 
surface force over a 
sphere of large radius, 
$ui, xj nk dA 

Contribution to bulk stress 
in dilute suspension of 
total volume V 

TABLE 1. Properties of the distant flow field associated with a single force-free particle 

The streamlines due to a stresslet at the origin are all radial lines, and the 
radial component of the velocity varies over the surface of a sphere in proportion 

- S,, cos2 8 - S,, sin2 8 cos2 q5 - S,, sin2 8 sin2 q5, to 

where ( r ,  8, 6) are spherical polar co-ordinates with 8 = 0 in the direction of 
one principal axis of the tensor Sii and 8 = &r, q5 = 0 in the direction of another. 
The streamlines due to a couplet, on the other hand, are circles about the line 
through the origin parallel to Li, and spherical shells of fluid rotate rigidly with 
angular velocity Li/8n-,ur3 (as in inertia-less flow due to a rotating rigid sphere). 
These elementary properties are illustrated in figure 1, where it is also indicated 
that a couplet and each principal element of the stresslet tensor Sii are equivalent 
to equal and opposite forces (or Stokeslets) applied to the fluid at two neigh- 
bouring points near the origin, the line joining the two points being normal to 
the forces in one case and parallel to them in the other. 

It would be natural to suppose that the stresslet tensor Sii is determined 
wholly by the need for the no-slip condition to be satisfied at  the surface of a 
rigid particle immersed in fluid undergoing a pure straining motion and that it 
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is independent of L,. However, consideration of an ellipsoidal particle in the 
next section shows that this is false, except when the particle is spherical. It 
appears that, if a non-spherical particle is made to  rotate by the action of an 
externally imposed couple, in the absence of any bulk deformation of the 
suspension, the resulting particle stress has a non-zero antisymmetrical part, 
as given by the second term on the right-hand side of (5.14), and a non-zero 
symmetrical part. This can be understood in terms of the stress acting a t  the 
surface ofthe rotating particle. When the disturbance surface force is everywhere 
normal to  the position vector, as it is for (and only for) a rotating sphere and as 
is symbolized in figure 1 ( b ) ,  the net effect of the surface force is a pure couple; 
but a non-zero component of the surface force parallel to  the position vector 
will yield a resultant tension of the kind symbolized in figure 1 (a) .  

FIGURE 1. Streamlines in the plane normal to the z,-axis for ( a )  a stresslet such that the 
principal axes of the defining tensor Sii coincide with the co-ordinate axes and 

S,, = -S,, = - 2aF, S,, = 0 ;  

and ( b )  a couplet such that L,  = L, = 0,  L, = 2aP. The opposing forces of magnitude 
P are separated by a distance 2a in every case. The ellipse in (a )  shows the position of an 
ellipsoid rotating about the 2,-axis under the action of an imposed couple which would 
generate a symmetrical particle stress of this kind ($6) .  

It is thus necessary to allow for two contributions to  Si3, one arising from the 
presence of the particle in a pure straining motion of the ambient fluid and 
necessarily linear in eii, and the other arising from the rotation of the particle 
under the action of the imposed couple and necessarily linear in Li. We may write 

(5.15) 

where cijkl  and Cijk are symmetrical in i and j and depend only on the shape, 
size and instantaneous orientation of the particle; also, in view of (5.9), 

ci$,, = 0,  Ciik = 0, 
36-2 
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and we may also suppose that C,,, is symmetrical in k and 1 since only its con- 
traction with e,, is relevant. Hence the particle stress in a dilute suspension of 
total volume P is 

(5.16) L'$) = - C {47r,uCijklekl + Q( Cijk + eiik) Lk}, 

the summation being over all the particles in V .  For the particular case of a 
dilute suspension of particles in a Newtonian ambient fluid we have thus been 
able to show, without hypothesis, that  the suspension is quasi-Newtonian; and 
comparison with the general form (2.1) for the symmetrical part of the stress 
due to the bulk deformation shows that 

1 
V 

for a dilute suspension. 
In  all the above analysis, we have regarded the pure couple L exerted on the 

particle by external means as a given quantity. The effect of the couple is to  give 
the particle an additional motion relative to  the ambient fluid which is charac- 
terized by the quantities v@) and I?@) (see (5.5)), both of which are linear functions 
of L, and the viscous stresses set up at the particle surface by this motion then 
transmit the couple to the fluid. If the couple is exerted by means of an externally 
applied magnetic field acting on a particle with a magnetic moment, as in the 
recent experiments of McTague (1969), the couple depends on the particle 
orientation and may take a value which is itself affected by the bulk motion. For 
instance, if the magnetic field is sufficiently strong to  prevent the magnetic axis 
of the particle from being turned by the bulk motion through more than a small 
angle, the value of the couple can be determined from hydrodynamic considera- 
tions and will clearly be a linear function of XJi/axj. I n  these circumstances the 
rheological relation (5.16) takes a form which may be used conveniently for the 
determination of a whole flow field. 

It is desirable to  get some idea of the way in which the tensor coefficients 
Ciikl and Cijk, and the coefficients in the linear relations between L and v@) and 
W), depend on particle shape and orientation. Ellipsoidal particles make a very 
convenient vehicle for a consideration of shape effects and we proceed to this 
case. 

6. A dilute suspension of rigid ellipsoidal particles 
The foregoing relations for a dilute suspension simplify a little when the 

surface of each particle is symmetrical about each of three orthogonal planes. 
Symmetry arguments show that, when such a rigid particle rotates about any 
axis through its centre in fluid a t  rest a t  infinity, the force exerted on it by the 
fluid is zero;? when it is in translational motion through fluid at  rest at infinity, 
the couple exerted on i t  by the fluid is zero;? and, when it  is immersed in fluid 
which is in pure straining motion far from the particle, the force on the particle 

t These results for an orthotropic particle &re given in the book by Happel & Breriner 
(1965, 35.6). 
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is zero if the centre moves with the velocity of the undisturbed pure straining 
motion a t  that same point. As a consequence, the centre of a force-free particle 
of this shape immersed in fluid which has the uniform velocity gradient (5.1) 
at infinity moves with a velocity equal to  that of the undisturbed fluid a t  the same 
point, and we may put 

in (5.5). Moreover, the coefficient in the linear relation between the externally 
imposed couple L and the resulting angular velocity 
at rest a t  infinity, namely 

of the particle in fluid 

(6.1) L~ = k i p ,  

is evidently a second-order tensor with non-diagonal elements which are zero 
when referred to axes coinciding with the intersections of the three planes of 
symmetry of the particle. There are presumably similar implications for the 
tensor coeficients Cijkl and Cijk, although these are less evident. 

An ellipsoid has the above kind of symmetry, and it happens that complete 
detailed results for a dilute suspension of rigid ellipsoids can be obtained by 
using the well-known work by Jeffery (1922). Many writers on dilute suspension 
theory have made use of Jeffery's results to calculate the additional rate of 
dissipation due to the presence of couple-free particles, and have interpreted this 
in terms of an increased apparent viscosity of the suspension. As (5.17) indicates, 
such an interpretation is correct only for certain symmetry properties of the 
instantaneous distribution of particle orientations, and this in turn depends on 
the nature of the bulk motion and perhaps on the distribution a t  some initial 
time; failure to appreciate this has led some writers to describe the bulk properties 
of the suspension in terms of an effective viscosity in circumstances in which 
the stress system may not be of Newtonian form. The safe plan is to calculate 
the particle stressdue to aparticleof specified shape andorientation, whichreduces 
to  a determination of the tensor Ciikl and Cijk, and then to add the contributions 
from the different particles taking into account the distribution of their orienta- 
tions which results from rotation in the given bulk motion (and from Brownian 
motion, in the case of very small particles). 

Jeffery shows (see his equations (22), (23), (24) with (50)) that, when a rigid 
ellipsoid on which a couple, but no force, is imposed by external means is em- 
bedded in a pure straining motion, the disturbance velocity far from the ellipsoid 
is of the form (5.8) and that the components of the tensor Dij  for axes coinciding 
instantaneously with the principal axes of the ellipsoid are 

Dl l=$A,  D Z 2 = # B ,  B33=#C, B12=#H,  D 21 - -  - W',}  
DZ3 = #F, 

(6.2) - 
D3, = #F', B,, = #G, D13 = $GI, 

where expressions for the coeflicients A ,  B, . . . in terms of the angular velocity 
of the ellipsoid and the ambient rate of strain are available. This formula for 
the particle stress (which is what it is, effectively, in view of (5.12)) has been 
noted by Giesekus (1962) but has been otherwise neglected. Here we go a little 
further and obtain explicit expressions for Cijk, and Ciik and the angular resistance 
coeficient ki j .  
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With unit vectors parallel to  the principal axes of the ellipsoid denoted by 
p, q, r, the relation between the components of the tensor Dir for the general and 
special sets of axes is - 

D i j  = DkZYiky j l ,  

yil = y l i = p i ,  y .  = y,. = q .  y .  = y where a2 a a ,  a3 3i = T i ,  

and so 

Dir = $(Apip j+Bqiq j+Crir j+Hpiqr+ H‘pjqi+ Fqirj+F’qjri 

+ Gripr + G’rrpi). (6 .3 )  

Jeffery’s expressions for A ,  B ,  . . . (his equations ( 2 5 ) ,  ( 2 6 ) )  involve the components 
of the mte-of-strain tensor referred to his special choice of axes, and w0 must 
make the substitutions 

- 
ell = eklyklyZi = eklPkPl ,  

%2 = eklyk ly12  = eklpkqi, etc. 

The expression for D, for an ellipsoid is then obtained as 

+two similar terms , (6 .4 )  I b2qjri - c2q .r . 
b2 + c2 

D~~ = cijkZ ekz - ( $(F - F) 
where 

I n  these expressions a, b, c are the semi-diameters of the ellipsoid, and I,, I,, I3 
and J,, J,, J3 are integrals like 

abc(b2 + c2) dh abch d h  
A(b2+h)(c2+h)’  J 1 = / ~ m A ( b  ,+A) (CZ+h)’ (6 .6 )  

where A2 = (a2 + A )  (b2 + A )  (c2 + A ) .  

(In Jeffery’s paper, I,/abc(b2 + c2) and Jl/abc are denoted by ah and a: respectively; 
Il and J1 are dimensionless quantities depending only on the shape of the ellipsoid, 
which is convenient.) 

Jeffery gives the relation between the angular velocity of the ellipsoid and 
the couple imposed on i t  (his equation (36)-but note that his couple (L,  M ,  N )  
is minus the vector couple L used here), from which we find first the zero-couple 
relation 

and then the rotational resistance coefficient 

PiPi 
J1 + 21, b2c2(b2 + c2)--2 + * * ’  + . * ’  

1 Gnabcp k.. = ___ 
1.3 

He also shows that 
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It is immediately clear that the antisymmetrical part of Dij, as given by 
(6.4), is indeed of the expected form (5.13). The symmetrical part likewise has 
the expected form (5.15), and we have 

(6.10) 

FIQTJRE 2. Far-field streamline in a principal plane of an ellipsoid forced to rotate in 
fluid at rest at  infinity. The angular velocity is normal to the plane of the figure. The 
equation for the streamlines in the far field is 

3 a2-b2  
In u = const. -- __ cos 29, 

4 a2+b2 

where u, 9 are polar co-ordinates in the plane and 9 = 0 in the direction of the principal 
diameter 2a; and all far-field streamlines are geometrically similar to the one shown. 

It is now not difficult to appreciate that the contribution to the symmetrical 
part of the particle stress due to the imposed couple is associated with the radial 
motion of the fluid, at  some distance from the particle, caused by the rotation 
of a non-spherical particle. The disturbance velocity far from an ellipsoid on 
which a couple N parallel to the third principal axis acts, in the absence of a 
bulk deformation, has a radial component 

where 2, %j are components of x in the directions of the first two principal dia- 
meters. There is outflow in the first and third quadrants of the (%,?)-plane, 
when a > b, and inflow in the second and fourth quadrants in the lee of the ends 
of the ellipsoid. The point is also made by figure 2, which shows the form of the 
streamlines, far from a rotating ellipsoid, in one of the principal planes. The 
circumferential component represented by these streamlines is responsible for 
the antisymmetrical part of the particle stress, and the radial component 
generates a contribution to the symmetrical part of the particle stress; and, 
contrary to what one might be inclined to suppose, the radial component of 
disturbance velocity approaches zero no more rapidly, as r -+ co, than the circum- 
ferential component. The angular pattern of the symmetrical part of the particle 
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stress may be visualized by noting that it is as in figure 1 (a) ,  when the long 
diameter of the ellipsoid has the angular position shown in that figure. 

In  the case of a suspension of couple-free ellipsoids which are similar in shape 
and similarly oriented, cijk&bC has the same value for all the particles; then, 

C Z*n-abc from (5.16) we have 
217) = 3 , u e , , 2  + , (6.11) 

in which Ci,,/abc is given by (6.5) and 2 p a b c / V  is simply the concentration of 
particles by volume. 

As a partial check on these formulae we may note that for the special case of 
a sphere, a = b = c, both I??’ and Cijk vanish, as expected (a pure straining 
motion cannot make a sphere rotate, and a couple applied to  a sphere cannot 
produce any radial motion far from the sphere), and (6.8) yieldsthe known formula 

Li = 8n-,ua3 I??). (6.12) 
Also (6.5) reduces to  

c i j k l  = %a3( &, S,, + isi, Sjk - +Si , Ski) , (6.13) 

which yields a Newtonian form of the bulk stress tensor with the Einstein value 
of the increase in the effective viscosity (viz. &u by the volume concentration). 

Jeffery (1922) showed that the action of a bulk pure straining motion without 
rotation is to turn a couple-free ellipsoidal particle so that its largest diameter 
is ultimately parallel to  the greatest principal rate of extension and its smallest 
diameter is ultimately parallel to the least principal rate of extension. It is not 
difficult to see that, in a dilute suspension of either prolate or oblate spheroids 
which is subjected to an axisymmetric bulk pure straining motion, the bulk stress 
in that ultimate state has the same axial symmetry and so has the Newtonian 
form. Thus in this particular case it is possible to describe the particle stress in 
terms of an additional viscosity and to  obtain its value from the change in the 
rate of dissipation due to the presence of the particles, as has been done by 
Takserman-Krozer & Ziabicki (1963). 

Another circumstance in which the bulk stress has the Newtonian form occurs 
when couple-free particles are subjected to such strong Brownian motion that 
their orientations are randomly distributed with uniform probability. The sus- 
pension here has a microscopic structure which is statistically isotropic, and 
an average of the expression (6.5) for Cijlcl over all particle orientations yields a 
tensor form like (6.13), although with a different value of the effective viscosity. 
It may be shown with a little trouble that in this case 

the increase in the bulk viscosity due to  the particles being the coefficient of 
2eij. So far as I know, this expression has not been given before, although it is 
latent in Jeffery’s work. It could be used to  investigate numerically the effect 
of particle shape on the effective viscosity, for this case of dominant Brownian 
motion; however, the results available for spheroids (for which the values of 
11, J1, et,c. can be calculated more readily) are probably adequate for this purpose. 



Xtress system in a suspension of force-free particles 569 

Appendix. The place of surface tension in the analysis of bulk stress 
In  any consideration of the distribution of stress over a region which includes 

an interfacial surface, surface tension must be regarded as a singularity in the 
stress distribution with certain integral properties. A volume integral of the 
stress over such a region is then improper, strictly speaking, and must be in- 
terpreted appropriately. It is helpful for some purposes to regard the interface 
as a layer of small thickness 8, and to take the limit e -+ 0 subsequently. The 
stress components for which both suffixes correspond to directions in the tangent 
plane of the interface are of large magnitude in the layer, and the correct integral 
properties may be obtained by supposing this singular part of the stress tensor 
in the layer to be of the form T(S,, - nin,)/e, where T is the coefficient of surface 
tension and n is the unit normal to the interfacial surface. The contribution to 
the volume integral J c i j d  V from the portion of the interfacial surface A lying 
within the integration volume V is then 

J T (Sii - n, n,) dA . (A 1) 
One-half of the integral (A 1) for a closed surface A ,  has been termed the sur- 

face-energy tensor, since its trace equals the surface energy TA,  and it is found 
to  play a role in ‘virial theorems’ which is analogous to that of other energy 
tensors such as &uiujd V (Rosenkilde 1967). 

Then, with V, + denoting the volume of a particle bounded by the closed surface 
A, + on the outer side of the interfacial layer, and V, - and A, - the corresponding 
quantities for the inner side of the same interfacial layer, we have 

cijdV = T(Sij-nini)dA. (La+ -Lo-) sa. 
Rosenkilde shows (by applying Stokes’s theorem for a closed surface to the 
quantity ekilxjnl, regarded as a vector with components given by the different 
values of k) that an alternative expression for the right-hand side is 

/A,Txjn, divndA. 

But since divn is equal to the sum of the curvatures of any two orthogonal 
sections of the interfacial surface which contain the local normal n, Tn, divn 
is simply the jump in normal stress across the interface due to surface tension. 
It follows that 

which confirms explicitly the statement in the text that the volume integral on 
the right-hand side of (4.3) has the same value for V, + and for V, - . 

It will be noted that in the case of a suspension of spherical fluid drops which is 
stationary everywhere, the bulk stress is unaffected by the existence of surface 
tension (the contribution to the volume average from the excess pressure within 
a drop being cancelled by the contribution from the interfacial layer) and is 
identical with the stress in the ambient fluid. In  general, surface tension affects 
the bulk stress only through its influence on the shape and motion of the particle. 

When an interface is deformed, work is done, and the volume integral used to 



570 G. K .  Batchelor 

evaluate the average rate of dissipation @ (see (4.8)) contains a contribution 
from surface tension. The contribution to the integral I + aui/8xj (gij + gii) d V 
from the interfacial surface A ,  lying within the integration volume V is 

which equals the rate of increase of surface energy T A ,  when Ip is uniform over 
A,. But the deformation of a surface element is a reversible process, and changes 
in the surface energy should not be counted as ‘dissipation’. It is therefore neces- 
sary to modify the relations (4.8) and (4.9) by replacing the average rate of dis- 
sipation @ by CD + dY/dt,  where 

Y = (l/V)I;TA, 
is the surface energy per unit volume of the suspension. In  the case of couple- 
free particles and negligible inertia forces, (4.9) then reduces to 

which provides an indication that when the surface energy is changing the bulk 
stress has some features characteristic of an elastic medium. 
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